Protein Structure
Carboxypeptidase A
Alpha Chymotrypsin
Ribonuclease A
Receptor Sites
Double-Helix B-DNA


Download Topic PDF


1. M. F. Chaplin, Nature Rev. Mol. Cell Biol. 7: 861-866 (2006). Do we underestimate the importance of water in cell biology? See also, N. R. Pace Cell 65: 531-534 (1991). Origin of Life – Facing up to the physical setting. Also, J. Glanz, Science 276: 505 (1997). Cell Biology: Force-Carrying Web Pervades Living Cells. Also, A. Kaufmann, The Origins of Order: Self Organization and Selection in Evolution. (Oxford University Press, Inc., 1992).

2. K. A. Dill and J. L. MacCallum, Science 338: 1042-1046 (2012). The Protein Folding Problem, 50 Years On.

3. W. Kauzmann, C. R. Trav. Lab. Carlsberg Chim. 29(14-15): 230-259 (1959). The stability of hydrogen-bonded peptide structures in aqueous solution.

4. R. L. Baldwin, Proc. Natl. Acad. Sci. USA 111 (36): 13052-13056 (2014). Dynamic hydration shell restores Kauzmann’s 1959 explanation of how the hydrophobic factor drives protein folding. See Also, S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, V. Heugen, M. Garebele, D. M. Leitner and M. Havenith, Proc. Natl. Acad. Sci. USA 104(53): 20749-20752 (2007). An extended dynamic hydration shell around proteins. Also, K. S. Pal, J. Preon and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99(24): 15297-15302 (2002). Ultra-fast surface hydration dynamics and expression of protein functionality: Alpha Chymotrypsin. Also, A. J. Patel, P. Varilly, S. N. Jamadagni, M. F. Hagan, D. Chandler and S. Garde, J. Phys. Chem. B 116(8): 2498 (2012). Sitting on the Edge: How Biomolecules use Hydrophobicity to Tune their Interactions and Functions. Also, D. Chandler, Nature 437: 640 (2005). Interfaces and the Driving Force of Hydrophobic Assembly. Also, B. J. Berne, J. D. Weeks and R. Zhou. Ann. Rev. Phys. Chem. 60: 85-103 (2009). Dewetting and Hydrophobic Interaction in Physical and Biological Systems. Also, S-Y. Sheu and D-Y. Yang. J. Phys. Chem. 114 (49): 16558-16566 (2010). Determination of Protein Surface Hydration Shell Free Energy of Water Motion: Theoretical Study and Molecular Dynamics Simulation. Also, B. Halle, Philos. Trans. R. Soc. Lond. Biol. Sci. 359: 1207-1224 (2004). Protein hydration. Also, E. H. Kellog, O. F. Lange and D. Baker. J. Phys. Chem. B. 116(37): 11405 (2012). Optimization of discrete models of protein folding. Also, E. K. Modig, E. Liepinsh, G. Otting, and B. Halle, J. Am. Chem. Soc. 126: 102-114 (2004). Dynamics of protein and peptide hydration. Also, F. Mallamace, et al. J. Phys. Chem. B. 115(48): 14280-14299 (2011). A Possible Role of Water in the Protein Folding Process. Also, L. Zhang, et al., Proc. Natl. Acad. Sci. USA 104(47): 18461-18466 (2007). Mapping hydration dynamics around a protein surface.

5. Paola Gallo, et al. Chemical Reviews 116: 7463-7500 (2016). A Tale of Two Liquids.

6. H. E. Stanley et al. J, Phys. Condens. Matter 21: 504105-504118 (2009). Heterogen-eities in Confined Water and Protein Hydration Water.

7. H. S. Frank, Science 169: 635 (1970). The Structure of Ordinary Water. See also, F. Franks (ed.) Water – A Comprehensive Treatise. (Plenum, 1972). Also, D. Eisenberg and W. Kauzmann, Structure and Properties of Water. (Oxford University Press, 1969. Also, D. P. Stevenson, Structural Chemistry and Molecular Biology. (Freeman, 1968). Also, P. G. Kosolik and I. M. Svishchev, Science 265: 1219 (1994). Spatial Structure in Liquid Water. Also, S. Pnevmatikos, Phys. Rev. Lett. 60(15): 1534 (1988). Schematic one-dimensional structure.

8. N. Vinogradov and R. H. Linnell, Hydrogen Bonding (Van Nostrand Reinhold, (1971). See also, L. Pauling, The Structure of Water Hydrogen Bonding, ed, D. Hadzi (Pergamon, New York, 1959). See also, M. W. Fryereisen, D. Feller and D. A. Dixon, J. Phys. Chem. 100(8): 2993-2997 (1996). Hydrogen Bond Energy of the Water Dimer.

9. Y. Zubavicus, and M. Grunze, Science 304: 974-976 (2004). New Insights into the Structure of Water with Ultrafast Probes.

10. J. R. Hoyland and L. B. Kier, Theor. Chim. Acta. 15: 1-11 (1969). Molecular orbital calculations for hydrogen-bonded forms of water. See also, J. Del Bene and J. A. Pople, J. Chem. Phys. 52: 48-61 (1970). Theory of Molecular Interactions: Molecular Orbital Studies of Water. Also, Sokolov, Ann. Chim. (Paris) 10: 497 (1965). The Theory of the H Bond.

11. A. H. Narten and H. A. Levy, Water – A Comprehensive Treatise pp. 311-332 (Plenum Press, 1972). Surface of Liquid Water: Scattering of X-rays.

12. E. D. Isaacs, et al., Physical Rev. Letters 82(3): 600 (1999). Covalency of the Hydrogen Bond in Ice: A Direct X-Ray Measurement. See also, J. Grdadolnik, F. Merzel and F. Avbelj, Proc. Natl. Acad. Sci. USA 114(2): 322-327 (2017). Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic surfaces. (Covalency of hydrogen-bonding in water adjacent to hydrophobic surfaces.)

13. A. Tokmakoff, Science 317: 54-55 (2007). Shining light on the rapidly-evolving structure of water.

14. H. Eyring and M. S. Jhon, Significant Liquid Structures, p. 115 (John Wiley and Sons. 1969). The Domain Theory of the Dielectric Constant of H-Bonded Liquids. See also, M. E. Hobbs, M. S. Jhon and H. Eyring. Proc. Natl. Acad. Sci. USA 56(1): 31-38 (1966). Also, Y. Qin, I. Wang and D. Zhong, Proc. Natl. Acad. Sci. USA 113(30): 8424-8429 (2016). Dynamics and mechanism of ultrafast water-protein interactions.

15. R. Lumry and S. Rajender, Biopolymers 9: 1125-1227 (1970). Entropy-Enthalpy Compensation Phenomena in Water Solutions of Proteins and Small Molecules: A Ubiquitous Property of Water.

16. J. L. Ranck, L. Mateu, D. M. Sadler, A. Tardieu, T. Gulik-Krzywicki and V. Luzzati, J. Mol. Biol. 85: 249 (1974). Order-disorder conformational transitions of hydrocarbon chains of lipid.

17. C. Y. Lee, J. A. McCammon and P. J. Rossky, J. Chem. Phys. 80(9): 4448 (1984). The structure of liquid water at extended hydrophobic surfaces. See also, L. F. Scatena, M. G. Brown, and G. L. Richmond, Science 292: 908-9125 (2001). Water at hydrophobic surfaces: Weak Hydrogen Bonding and Strong Orientational Effects. Also, G. W. Robinson and C. H. Cho, Biophys. J. 77: 3311-3318 (1999). The Role of Water in Protein Unfolding.

18. J. Minbiao M. Odelius and K. J. Gaffney, Science 328: 1003-1005 (2010). Large Angular Jump Mechanism observed for hydrogen-bond exchange in aqueous perchlorate solution. See also, D. Lange and J. T. Hynes, Proc. Nat. Acad. Sci. USA 104: 11167 (2007). Reorientation Dynamics of Water Molecules in Anionic Hydration Shells. Also, J. L. Skinner, Science 328: 985-986 (2010). Following the Motions of Water Molecules in Aqueous Solutions. Also, J. D. Cruzan et al., Science 271: 59 (1996). Quantifying Hydrogen Bond Cooperativity in Water. Also, N. E. Tuckerman, D. Marx, D. Klein and M. Parrinello, Science 275: 817 (1997). On the Quantum Nature of the Shared Proton in Hydrogen Bonds.

19. E. Schrodinger, Math. Proc. of the Cambridge Phil. Soc. 31(04): 555 (1935). Discussion of the probability relations between separate systems. See also, E. Schrodinger, What is Life? with Mind and Matter (Cambridge University Press, 1944 and 1967).

20. J. C. Collins, Biomolecular Evolution from Water to the Molecules of Life. Molecular Presentations (2013). See also, L. B. Kier, Molecular Orbital Theory in Drug Research, Academic Press (1971).

21. E. Mayer and A. Hallbrucker, Nature 325: 601 (1987). Cubic ice from liquid water. See also, A. K. Soper, Science 297: 1288 (2002). Water and Ice.

22. B. Kamb, Structural Chemistry and Molecular Biology, pp. 507-542. (Freeman, 1968). Ice Polymorphism and the Structure of Water.

23. P. Sykes, A Guide to Mechanisms in Organic Chemistry (Pearson Prentice Hall, 1986). See also, M. A. Fox and J. K. Whitsell, Organic Chemistry, 3rd Ed. (Jones and Bartlett, 2004).

24. D. E. Woessner and B. S. Snowden, Jr., Ann. N. Y. Acad. Sci. 204: 113-124 (1973). A pulsed NMR study of dynamics and ordering of water in interfacial systems.

25. D-S. Yang and A.H. Zewail, Proc. Nat. Acad. Sci. USA 106(11): 4122-4126 (2009). Ordered water structure at hydrophobic graphite interfaces observed by 4D ultrafast electron crystallography. Also, C-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen and A. H. Zewail, Science 304: 80-84 (2004). Ultrafast Electron Crystallography of Interfacial Water.

26. J. M. Rogers and J. D. Weeks, Proc. Nat. Acad. Sci. USA, 105(49): 19136-19141 (2008). Interplay of Local Hydrogen-Bonding and Long-Ranged Dipolar Forces in Simulations of Confined Water. See also, P. Ball, Chem. Rev. 108(1): 74 (2008). Water as an active constituent in cell biology.

27. J. D. Watson and F. H. C. Crick, Nature 171: 737-738 (1953). Molecular Structure of Nucleic Acids. A Structure of Deoxyribonucleic Acid. See also, J. D. Watson, The Double Helix (A Signet Book, The New American Library, 1968). See also, R. Franklin and R. G. Gosling, Nature 171: 740-741 (1953). Molecular Configuration in Sodium Thymonucleate.

28. S. K. Pal, L. Zhao, T. Xia and A. H. Zewail, Proc. Nat. Acad. Sci. USA 140(24): 13746 (2003). Ultrafast Hydration of DNA. See also, S. Pal, P. K. Maiti and B. Bagchi, J. Phys.: Condens. Matter 17: S4317-S4331 (2005). Anisotropic and sub-diffusive water motion at the surface of DNA.

29. T. Sun, F-H. Lin, R. L. Campbell, J. S. Allingham and P. I. Davis, Science 343: 795-798 (2014). An Antifreeze Protein Folds with an Interior Network of More than 400 Semi-Clatherate Waters.

30. N. V. Nucci, M. S. Pometun and A. J. Wand, Nature Structural and Site Biology 18: 245-249 (2011). Site-resolved measurement of water-protein interactions by solution NMR. See also, T. E. Creighton, Proteins: Structure and Molecular Properties. (W. H. Freeman, 1983). Also, D. E. Shaw et al., Science 330: 341-346 (2010). Atomic-Level Characterization of the Structural Dynamics of Proteins. Also, D. Zhong, et al. J. Am. Chem. Soc. 131(30): 10677-10691 (2009). Protein Hydration Dynamics.

31. M. Fung, Science 190: 800-802 (1975). Orientation of water in striated frog muscle. See also, J. R. Grigera and H. J. C. Berendsen, Biopolymers 18(1): 47-52 (1978). The molecular detail of collagen hydration. Also, J. Bella, B. Brodsky and H. R. Berman, Structure 3(9): 893-906 (1995). Hydration structure of a collagen peptide.

32. O. F. Mohammed, D. Pines, J. Dreyer, E. Pines and E. T. J. Nibbering, Science 310: 83 (2005). Sequential Proton Transfer through Bridges in Acid-Base Reactions. See also, M. G. Brown, J. G. Loeser and R. J. Saykally, Science 271: 59 (1996). Quantifying Hydrogen-bond Cooperativity in Water. Also, A. J. Horsewell, N. H. Jones and R. Caciuffo, Science 291: 100 (2001). Evidence for coherent proton tunneling in a hydrogen bond network. Also, J. Lin, H. A. Balabin and D. H. Beratan, Science 310: 1311 (2005). The Nature of Aqueous Tunneling Pathways. Also, U. S. Raghavender, et al., J. Phys. Chem. B. 115(29): 9236-9243 (2011). Entrapment of a water wire in a hydrophobic peptide channel with an aromatic lining. Also, S. Numa, Biochem. Soc. Symp. 52: 119 (1986). Molecular Basis for the Function of Ionic Channels.

33. C. A. Chatzidimitriou-Dreismann et al.,Physical Review Letters, 1 August (2003). F. Sanders, Discover, Nov. 10, 2003. Where in the H is the H in H2 O? C. A. Chatzidimitriou-Dreissmann, Physica. B. 385(1): 1 (2006). Attoscond Quantum Entanglement in Neutron Compton Scattering from Water in the KeV Range.

34. T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. K. Dodson, G. G. Dodson, G. G. Hodgkin, D. A. Mercola and M. Vijayan, Nature 231: 506 (1971). Atomic positions in rhombohedral 2-zinc insulin crystals.

35. C. W. Ward and M. C. Lawrence, BioEssays 31 (4): 422 (2009). Ligand-induced activation of the insulin receptor.

36. J. V. Howarth, R. D. Keynes and J. M. Ritchie, J. Physiol. 194: 745 (1968). Heat released from nerve membrane during depolarization. See also, D.–G. Margineau and E. Schoffeniels, Proc. Natl. Acad. Sci. USA 74(9): 3810-3812 (1977). Molecular events and energy changes during the action potential. Also, L. B. Cohen, B. Hille and R. D. Keynes, J. Physiol. 211: 495 (1970). Increased order in nerve membrane depolarization. Also, D. Debanne, E. Campanac, . Bialowas, E. Carlier and G. Alcaraz, Physiological Reviews 91(2): 555 (2011). Axon Physiology. Also, M. Prats, J. Teissie and J. Tocanne, Letters to Nature 322: 756 (1986). Lateral proton conduction at lipid-water interfaces.

37. E. Conway, Ann. Rev. Phys. Chem. 17: 481 (1966). Electrolyte Solutions: Solvation and Structural Effects. See also, P. M. Wiggins, J. Theor. Biol. 32: 131 (1971). Water structure as a determinant of ion distribution in living tissue. Also, C. F. Hazelwood, (ed.) Ann. N.Y. Acad. Sci. 204 (1973). Physicochemical state of ions and water in living tissues and model systems. Also, B. Hribar, N. T. Southhall, V. Vlachy and K. A. Dill, J. Am. Chem. Soc. 124: 12302-12311 (2004). How ions affect the structure of water. Also, H. J. Bakker and H.-K. Niehuys, Science 297: 587 (2002). Delocalization of Protons in Liquid Water. Also, B. Weber et al., Science 335: 64 (2012). Ohm’s Law Survives at the Atomic Scale.

38. H. E. Huxley, Sci. Amer. 213(6): 18 (1965). The Mechanism of Muscle Contraction. See also, R. Cooke, Crit. Rev. in Biochem. 21(1): 53 (1986). The Mechanism of Muscle Contraction.

39. J. C. Collins, Unpublished studies.

40. C. Molteni and M. Parrinello, J. Am. Chem. Soc. 120: 2168 (1998). Glucose in Solution by First Principles of Molecular Dynamics. See also, J. M. Harvey, M. C. R. Symons and R. J. Naftalin, Nature 261: 435 (1976). Proton magnetic resonance study of the hydration of glucose. Also, F. Franks, P. J. Lilliford and G. Robinson, J. Chem. Soc. Faraday Trans. 85(8): 2417 (1989). Isomeric Equilibria of Monosaccharides in Solution.

41. L. Pauling, R. B. Corey and H. R. Branson, Proc. Natl. Acad. Sci. USA 37: 205-211 (1951). The Structure of Proteins. Two Hydrogen-bonded Helical Configurations of Polypeptide Chain. See also, L. Pauling and R. B. Corey, Proc. Natl. Acad. Sci. USA 37: 251-256 (1951). The Pleated Sheet. A New Layer Configuration of Polypeptide Chains.

42. F. A. Quiocho and W. N. Lipscomb, Adv. In Protein Chem. 25: 1 (1971). Carboxypeptidase A. See also, W. N. Lipscomb, Ann. Rev. Biochem. 52: 17 (1983). Structure and Catalysis of Carboxypeptidase A.

43. D. M. Blow, Acc. Chem. Res. 9: 145-152 (1976). Structure and Mechanism of Chymotrypsin. See also, D. M. Blow and T. A. Steitz, Ann. Rev. Biochem. 39: 86 (1970). Mechanism of Chymotrypsin.

44. C. B. Anfinsen, E. Haber, M. Sela and F. H. White Jr., Proc Natl. Acad. Sci. USA 47(9): 1309-1314 (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced peptide chain. Also, C. B. Anfinsen, Science 181: 223-230 (1973). Principles governing the folding of proteins.

45. M. Shtilerman, G. H. Lorimer and S. W. Englander, Science 284: 822-824 (1999). Chaperone Function: Folding by Forced Unfolding.

46. P. Y. Chou and G. D. Fasman, Biochemistry 13: 222 (1974). Prediction of protein conformation.

47. Also, M. Banach, L. Konieczny and I. Roterman, Can the Structure of the Hydrophobic Core determine the Complexation Site, identify the Ligand Binding Site and the Protein-Protein Interaction Area? (Springer Dordect, Heidelberg, 2013).

48. K. Lindorff-Larson, P. Stefano, R. O. Dror and D. E. Shaw, Science 334: 517-520 (2011). How Fast-Folding Proteins Fold.

49. N. Unwin, Nature 323: 12 (1986). Is there a common design for membrane channels? See also, M. S. Bretscher, Sci. Amer. 253(4): 100 (1985). Molecules of the cell membrane.

50. E. Feier, S. Wolft and K. Gerwert, Proc. Natl. Acad. Sci. USA 108(8): 11435-11439 (2014). Proton transfer via a transient linear water-molecule chain in a membrane protein.

51. W. N. Lipscomb, Proc. Robert A. Welch Fund. Conf. Chem. Res. 15: 140-141 (1971). Catalysis of Carboxypeptidase A.

52. C. J. Clarke, S. L. Buckley and N. Lindner, Cryo. Letters 23(2): 89 (2002). Ice-Structuring Proteins – A New Name for Antifreeze Proteins. See also, A. B. Siemer, K-Y. Huang and A. E. McDermott, Proc. Natl. Acad. Sci. USA 107(41): 17580-17585 (2010). Protein-ice interaction of an antifreeze protein observed with solid-state NMR.

53. R. T. Raines, Chem. Rev. 98: 1045-1065 (1998). Ribonuclease.

54. J. S. Richardson, Adv. in Protein Chem. 34: 167-339 (1981). The Anatomy and Taxonomy of Protein Structure.

55. G. Kartha, J. Bello and D. Marker, Nature 213 : 862-865 (1967). Tertiary Structure of Ribonuclease.

56. Y. A. Rezus and H. J. Bakker, Proc. Natl. Acad. Sci. USA 103(49): 18417-18420 (2006). Effect of urea on structural dynamics of water.

57. D. Findlay, D. G. Herries, D. G. Mathias, B. R. Rabin and C. A. Ross, Nature 190: 781-784 (1961). The Active Site and Mechanism of Action of Bovine Pancreatic Ribonuclease.

58. S. Sprang, E. Goldsmith and F. Fletterick, Science 237: 1012 (1987). Structure of the nucleotide activation switch in glycogen phosphorylase a.

59. G. Lagaly, Angew. Chem. Int. Ed. Engl. 15: 575-580 (1976). Kink-block and gaughe-block structures of biomolecular films.

60. G. L. Jandrasiak and J. C. Mendible, Biochimica. et Biophysica Acta. 424: 149 (1976). The Phospholipid Head-Group Orientation: Effect on Hydration and Electrical Conductance.

61. D. L. D. Caspar and D. A. Kirschner, Nature New Biology 231: 46 (1971). Myelin membrane structure at 10A resolution. See also, D. E. Green (eds.) Annal. N. Y. Acad. Sci. 195 (1975). Biological Membrane Structure and Function. See also, S. J. Opella, J. P. Yesinowski and J. S. Waugh, Proc. Natl. Acad. Sci. USA 73(11): 3812 (1976). NMR description of molecular motion and phase separations of cholesterol in lecithin dispersions. Also, P. T. Inglefield, K. A. Lindblom and A. M. Gottlieb, Biocimica et Biophysica Acta 419: 196 (1976). Water binding and mobility in phosphatidyl-choline/cholesterol/water lamellar phase.

62. W. A. Catterall, Science 242: 50 (1988). Structure and function of voltage-sensitive ion channels. See also, H. Bayley, Sci. Amer. 277: 62 (1997). Building Doors in Cells. Also, S. J. Singer and G. L. Nicolson, Science 175: 720-731 (1972). The fluid mosaic model of the structure of cell membranes. Also, D. Chapman and D. F. H. Wallach (eds.) Biological Membranes (Academic Press, New York, 1973).

63. R. M. Stroud and J. Finer-Moore, Ann. Rev. Cell Biol. 1: 317 (1985). Acetylcholine receptor: structure, function and evolution.

64. E. J. Ariens, Molecular Pharmacology (Academic Press, New York, 1964). See also, L. B. Kier, Molecular Orbital Theory in Drug Research (Academic Press, New York, 1965). Also, K. J. Brunings and P. Lindgren (eds.) Modern Concepts in the Relationship between Structure and Pharmacological Activity (MacMillan, 1971).

65. M. V. Milburn et al., Science 252: 1342 (1991). Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand.

66. E. Y. T. Chien et al., Science 330: 1091 (2010). Structure of Human D3 receptor in complex with a D2/D3 selective antagonist.

67. H. A. Lester, Sci. Amer. 236(20): 106 (1977). The response to acetylcholine.

68. N. Unwin, J. Mol. Biol. 346: 967 (2005). Refined structure of the nicotinic acetylcholine receptor at 4A resolution. See also, J. P. Changeux, J. L. Galzi, A. Devillers-Thiery and D. Bertrand, Quarterly Reviews of Biophysics 25(4): 395 (1992). The functional architecture of the Acetylcholine Receptor.

69. S. H. Snyder, Sci. Amer. 236(3): 44 (1977). Opiate receptors and internal opiates.

70. I. Marcotte et al. Biophys. J. 86(3): 1587 (2004). A multidimensional H NMR investigation of the conformation of methionine-enkephalin in fast-tumbling bicells.

71. G. Subramanian et al. Med. Chem. 43:381 (2000). Molecular Docking Reveals a Novel Binding Site Model of Fentanyl at mu-Opioid Receptor.

72. P. Nicolas, R.G. Hammonds and C. H. Li, Proc. Nat. Acad. Sci. USA 79(7): 2191-2193 (1982). Beta-endorphin opiate receptor binding activities of six natural-occurring beta endorphin homologs studies using tritiate human hormone and naloxone as primary ligands.

73. A. K. Shiau et al., Cell 95: 927 (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism by tamoxafen. See also, W. R. Nes and M. L. McKean, Biochemistry of Steroids and other Isopentenoids (University Park Press, 1977).

74. R. Breton et al., Protein Sci. 15(5): 987 (2006). Comparison of crystal structures of human androgen receptor ligand-binding domain with various agonist level molecular determinants responsible for bonding affinity.

75. S. H. Kim Advan. Enzymol. 246: 279 (1978). Three-dimensional structure of transfer RNA and its functional implications. See also, M. Illangasekare, G. Sanchez, T. Nickles and M. Yarus, Science 267: 643 (1995). Aminoacyl-t-RNA synthesis catalyzed by a ribonucleic acid.

76. J. J. Bonvin, M. Sunnerhagen, G. Otting and W. F. van-Gunsteren, J. Mol. Biol. 282: 859-873 (1998). Water Molecules in DNA Recognition II: A Molecular Dynamics View of the trp Operator. Also, S. Leikin, D. C. Rau and V. A. Parsegian, Physical Review A, 44(8): 5272-5278 (1991). Measured entropy and enthalpy of hydration as a function of distance between DNA double helices. Also, B. Gu, F. S. Zhang, Z. P. Wang and H. Y. Zhou, Phys, Rev. Lett. 100: 88104 (2008). Solvent-induced DNA conformational transition. See also, W. Fuller, T. Forsyth and A. Mahendrasingam, Phil. Trans. R. Soc. Lond. B 259: 1237-1248 (2004). Water-DNA Interactions as studied by X-ray and neutron fiber diffraction.

77. K. K. Woods, T. Lan, L. W. McLaughlin and L. D. Williams, Nucl. Res. 31(5): 1536-1540 (2003). The role of minor groove functional groups in DNA hydration.

78. P. Auffinger and E. Westhof, J. Mol. Biol. 268: 118-136 (1997). Water and Ion Binding around RNA and DNA. See also, V. Makarov, B. M. Petitt and M. Feig, Acc. Chem. Res. 35: 376-384 (2002). Solvation and hydration of proteins and nucleic acids: A Theoretical simulation and experiment.

Click here to download the complete book for FREE